如图所示,点o是直线AB上点,外径等分<BOC,< Coe = 90。(1)如果< AOC = 36,计算< DOE的程度;(2)如果≈AOC =α,那么DOE = _ _ _ _ _ _ _(用包含α的代数表达式表示)

如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.
(1)若∠AOC=36°,求∠DOE的度数;
(2)若∠AOC=α,则∠DOE=________.(用含α的代数式表示)

& # xa0; 参考答案和分析

【答案】(1)20°;(2) α.
【解析】试题分析:(1)先由邻补角定义求出∠BOC=180°-∠AOC=140°,再根据角平分线定义得到∠COD=∠BOC=70°,那么∠DOE=∠COE-∠COD=20°;
(2)先由邻补角定义求出∠BOC=180°-∠AOC=140°,再根据角平分线定义得到∠COD=∠BOC,于是得到结论.
试题解析:
(1)∵O是直线AB上一点,
∴∠AOC+∠BOC=180°,
∵∠AOC=40°,
∴∠BOC=140°,
∵OD平分∠BOC,
∴∠COD=∠BOC=70°,
∵∠DOE=∠COE-∠COD,∠COE=90°,
∴∠DOE=20°;
(2)∵O是直线AB上一点,
∴∠AOC+∠BOC=180°,
∵∠AOC=α,
∴∠BOC=180°-α,
∵OD平分∠BOC,
∴∠COD=∠BOC= (180°-α)=90°-α,
∵∠DOE=∠COE-∠COD,∠COE=90°,
∴∠DOE=90°-(90°-α)= α.
故答案为: α.[回答](1)20;(2) α。